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Fig. 1. Method overview. We start with an input video showing vibration of the object of interest. We extract a motion field for each frame and then decompose
this motion into image-space modes. An image-space mode is a horizontal and vertical displacement field that occurs periodically at a certain frequency
throughout the video. We model the object as a mesh and sample the visible mesh vertices in the image-space modes. From the image-space modes sampled
at these points, we are able to recover a voxelized volume of the Young’s modulus and density throughout the object.

An object’s interior material properties, while invisible to the human eye,
determine motion observed on its surface. We propose an approach that esti-
mates heterogeneous material properties of an object directly from a monoc-
ular video of its surface vibrations. Specifically, we estimate Young’s modulus
and density throughout a 3D object with known geometry. Knowledge of
how these values change across the object is useful for characterizing defects
and simulating how the object will interact with different environments.
Traditional non-destructive testing approaches, which generally estimate
homogenized material properties or the presence of defects, are expensive
and use specialized instruments. We propose an approach that leverages
monocular video to (1) measure an object’s sub-pixel motion and decompose
this motion into image-space modes, and (2) directly infer spatially-varying
Young’s modulus and density values from the observed image-space modes.
On both simulated and real videos, we demonstrate that our approach is
able to image material properties simply by analyzing surface motion. In
particular, our method allows us to identify unseen defects on a 2D drum
head from real, high-speed video.

1 INTRODUCTION

The subtle motions of objects around us are clues to their phys-
ical properties. Among such properties are stiffness and density,

Authors’ addresses: Berthy Feng, California Institute of Technology, Pasadena, USA,
bfeng@caltech.edu; Alexander C. Ogren, California Institute of Technology, Pasadena,
USA, aogren@caltech.edu; Chiara Daraio, California Institute of Technology, Pasadena,
USA, daraio@caltech.edu; Katherine L. Bouman, California Institute of Technology,
Pasadena, USA, klbouman@caltech.edu.

which dictate how an object will interact with its environment. As
humans, we can vaguely characterize how stiff or heavy a mate-
rial is, such as when we infer that a rubber basketball will bounce
higher than a ceramic bowling ball by tapping on its surface. Most
engineering applications, however, require a greater level of detail,
such as when an aeronautical engineer must faithfully simulate
how an airplane wing will react to wind turbulence. In graphics
applications, a full characterization of an object’s material proper-
ties allows one to faithfully simulate its behavior. These scenarios
require non-destructive testing to obtain physical properties of the
object without altering it.

We propose visual vibration tomography, an approach that esti-
mates the material properties of an object directly from vibration
signals extracted from monocular video. Much of non-destructive
testing (NDT) and structural health monitoring (SHM) has focused
on measuring vibrations to identify the presence and location of
defects in structures with a known geometry. However, the tools
developed for NDT/SHM are not generally used to determine the
precise spatial distribution of different physical properties in objects
with a heterogeneous interior structure.

Here, we show that we can measure structural vibrations as sub-
pixel motion in 2D video, and then use this motion to constrain
the downstream task of material-property estimation. Videos have
several advantages over existing NDT techniques: while contact
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sensors and laser vibrometers take point measurements, videos offer
spatially dense measurements of surface vibrations. While laser
vibrometers are expensive and specialized, cameras are ubiquitous
and general-purpose. While digital image correlation (DIC) requires
stereo cameras for 3D motion tracking, our method shows that in
many cases, a monocular view is all you need.

When objects vibrate with small displacements, their motion can
be decomposed into independent modes at resonant frequencies. As
a simple example, when a guitar string is plucked, it vibrates in a
standing wave at its fundamental frequency and integer multiples of
the fundamental, but imperfections in the string cause more complex
movement at resonant frequencies. Under known geometry, a set of
vibrational modes determines an object’s material properties up to
a scaling factor and vice versa; this is a key fact that motivates our
approach to solving for material properties from motion features.
Surface motion can be extracted from video and decomposed into
periodic motion at different frequencies [Davis et al. 2014]. These
decomposed motion fields are 3D modes projected onto 2D image-
space, which we refer to as image-space modes. The key challenge
of our task is to deal with incomplete and 2D (as opposed to full-
field) modes. Despite these challenges, we show that we are able to
recover material properties from image-space motion and recover
full-field modes in the process.

In this paper, we first review related work and the theoretical
relationship between modes and material properties. We then show
how to extract image-space modes from video and recover material
properties and full-field modes from these measurements (Fig. 1
shows an overview of the method pipeline). Finally, we demonstrate
our approach on simulated data generated from a variety of 3D
and 2D geometries. As a proof-of-concept experiment on real-world
data, we introduce material inhomogeneities to the bottom of a real
drum head and show that we are able to image these defects, even
though they are unseen in the captured video.

2 RELATED WORK

In this section, we review traditional NDT, as well as recent works
in computer vision and graphics that inspire our visual approach to
vibration tomography.

2.1 Traditional Material Characterization

A non-destructive way to characterize materials is to study their
movement in response to non-damaging, external forces. To that
end, laser vibrometry and digital image correlation (DIC) are popular
non-contact means to measure surface displacements.

A laser Doppler vibrometer sends laser beams towards the mov-
ing surface of interest and then, applying the Doppler effect, re-
covers displacement and velocity directly from the frequency and
phase changes of the backscattered light [Durst et al. 1981]. Laser
vibrometry has been used for a variety of applications, from mon-
itoring bridges [Nassif et al. 2005] and buildings [Roozen et al.
2015], to testing composite steel [Emge and Buyukozturk 2012]
and concrete [Chen et al. 2014a], and even to assessing the health of
fruits [Landahl and Terry 2020; Santulli and Jeronimidis 2006] and
trees [Zorovié¢ and Cokl 2015]. A single laser vibrometer is limited
in its measurement capacity: it can only measure 1D motion along

a single surface point at a time. Three independent laser beams can
be used to measure 3D vibration [Khalil et al. 2016], and a scanning
laser vibrometer can be used to scan a beam across the surface, but
these upgrades quickly become prohibitively expensive.

DIC, similarly to our method, computes displacements from digi-
tal images. Sub-regions of the image are tracked across time, and
local 3D displacements and strains are resolved [Chu et al. 1985]. DIC
has been used to identify defects in materials including glass [Sper-
anzini and Agnetti 2014], concrete [Feiteira et al. 2017; Helm 2008;
Wu et al. 2011], and masonry [Tung et al. 2008]. Such defects are
identified as regions of abnormal strain — not through solving an
inverse problem. Measuring 3D strains also requires at least two
cameras, whereas our framework uses a monocular view.

Modal analysis is a common downstream task of laser vibrom-
etry [MacPherson et al. 2007] and DIC [Ha et al. 2015; Helfrick
et al. 2011; Trebuna and Hagara 2014], among other NDT methods.
While usually regarded as a verification tool, rather than a means
to directly infer material properties, modal frequencies [Gentile and
Saisi 2007; Girardi et al. 2020] and shapes [Beardslee et al. 2021]
have been used to solve for homogenized material properties. Our
work presents a new method to (1) identify modes in image-space
and (2) directly infer spatially heterogeneous material properties
from image-space modes.

In the graphics community, systems have been specially built
to probe material properties of real-world objects for downstream
simulation of their behavior. However, they are often restricted to
homogenized material properties and particular object classes (e.g.,
fabrics) [Bickel et al. 2010; Miguel et al. 2012; Wang et al. 2011].
Previous works have inferred material properties from 3D point
clouds [Kim et al. 2017; Wang et al. 2015] and known external
forces [Xu et al. 2015].

2.2 Material Characterization from Video

In computer vision, scene understanding is an important goal that
includes, among many other tasks, classification and characteriza-
tion of materials. Static images have been used to classify [Liu et al.
2010] and describe [Ho et al. 2006; Sharan et al. 2008] materials.
Using video to identify the dynamic properties of materials has been
recently explored with applications for fabrics [Bhat et al. 2003;
Bouman et al. 2013] and trees [Wang et al. 2017]. Davis & Bouman
et al. introduced the idea of “visual vibrometry” [Davis et al. 2017,
2015a], using frequencies extracted from a video’s motion spectrum
to estimate stiffness and damping of fabrics and rods with known
geometry. Videos have also been used for modal analysis [Chen et al.
2014b, 2015; Harmanci et al. 2019; Yang et al. 2020] and structural
health monitoring [Sarrafi et al. 2018]. However, none of these past
works estimate material properties. Our work leverages informa-
tion from both frequencies and modes to quantify the heterogeneous
material properties of unseen parts of objects.

2.2.1 Small motions. Since our approach relies on small, often im-
perceptible, motions, we need a way to extract sub-pixel motions
from video. Several works in vision and graphics that have been pub-
lished in SIGGRAPH [Liu et al. 2005; Wadhwa et al. 2013; Wu et al.
2012] have developed ways to magnify small motions [Wadhwa et al.
2014]. As proposed by Wadwha et al. [Wadhwa et al. 2013], local
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Fig. 2. Small changes in material properties affect motion. Here a small
region of a circular membrane becomes stiffer from “Original” to “Original
+ Defect” This change appears as a slight change in the mode shown. In
this paper, we propose a technique to use small changes in observed modal
motion to recover the locations and magnitudes of defects in an object.

phase shifts in a complex steerable pyramid are computed [Portilla
and Simoncelli 2000; Simoncelli and Freeman 1995; Simoncelli et al.
1992]. This phase-based method has the advantage over other track-
ing methods (e.g., optical flow) of being robust to extremely small
motions, down to one thousandth of a pixel [Davis et al. 2015a].
The phase shifts can be converted to pixel displacements using the
approach originally discussed by Fleet and Jepson [Fleet and Jepson
1990; Wadhwa et al. 2017].

The phase-based approach for motion extraction was used by
Davis et al. [Davis et al. 2014] to convert small motions of everyday
objects into ambient sound signals. It was also used to extract image-
space modal bases from video for simulating plausible motion of
objects [Davis et al. 2015b]. In our work, we apply the same process
to extract image-space modes and then directly infer underlying
physical properties from these measurements.

3 MODELING OBJECT MOTION
3.1 Modal Analysis

Every object has resonant, or natural, frequencies. At each resonant
frequency, the object vibrates periodically in a particular shape,
called a mode. When you hit a drum, for example, you send an
impulse force to the drum head, which excites a range of resonant
frequencies in the membrane. The membrane responds by moving
up and down in a complicated way. When the displacements are
small, this motion can be decomposed into modes occurring at
independent frequencies.

The finite element method (FEM) models an object as a mesh,
composed of elements that each take on material-property values.
The material properties that determine an object’s vibration are
Young’s modulus (E), Poisson’s ratio, and density (p). Young’s mod-
ulus and Poisson’s ratio define the stiffness of connections between
vertices, while density defines the mass distribution over all vertices.
One can model a mesh as an interconnected system of springs and
masses, where the stiffness matrix K and mass matrix M describe
those connections. K and M can be computed using an FEM solver.

The stiffness matrix and mass matrix fully determine the modes
and resonant frequencies of an object with known geometry. A
mode u and resonant frequency w are an eigenvector-eigenvalue
pair solving the generalized eigenvalue problem:

Ku = 0*Mu. (1)
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The mode u describes the motion of the mesh at a resonant frequency
w. 3D objects have three directions of motion, meaning that there
are three degrees of freedom (DOFs) per mesh vertex. The vector
u therefore contains 3 X (# vertices) entries, giving the direction
and relative magnitude of motion for every DOF on the exterior
and interior of the object. When the object vibrates, its motion is a
linear combination of its modes.

As Fig. 2 illustrates, a small change in material properties within
a fixed geometry appears as a small change in modal motion. As
most solid materials have Poisson’s ratio ~ 0.3 [Poplavko 2019], the
principal material properties affecting motion are Young’s modulus,
which determines K, and density, which determines M. Our method
is based on the insight that mode shapes on the surface of an object
may reveal internal spatial inhomogeneities in these properties.

3.2 Inferring Material Properties from Motion

In solving the inverse problem, we would like to infer the material-
property values that cause observed motion. Assuming we perfectly
measure all modes u and frequencies w, then by Eq. 1, we can set
up the following minimization problem:

K* M = in ||[KU - MUA||2, 2
arg%\?ll I3 (2

where U is the matrix whose columns are modes u, and A is the
diagonal matrix containing eigenvalues w?. For a known geometry,
this is a convex problem with respect to K and M (with the con-
straints on K and M specified in Eq. 4). However, we will be working
with experimentally-observed, image-space modes, which incur the
following challenges:

(1) Unseen degrees of freedom (DOFs). When we cannot observe
the interior or all surfaces of an object, we do not have
modal information for all of its vertices. For example, when
observing a 3D cube with a single monocular camera, one
can see at most three of its sides, projected onto two direc-
tions of motion. Consider an 8x8x8 cubic mesh, which has
(8+1)3 = 729 vertices. Since it has three directions of motion,
ithas 3x729 = 2187 total DOFs. But a single monocular view
of three sides of the cube can only observe 217 vertices, mov-
ing in two directions of motion, amounting to 2 X 217 = 434
image-space DOFs. This alone limits us to observing fewer
than 20% of the full-field DOFs for an 8x8x8 cube.

(2) Unseen modes. Theoretically, for discrete meshes, there are as
many modes as there are DOFs. However, we can only capture
modes at resonant frequencies below the Nyquist sampling
rate of the camera. For a video with frames-per-second FPS,
the Nyquist sampling rate is FPS/2.

(3) Noise. Aside from camera noise, there is noise from motion
extraction, particularly in non-textured regions of the image.

As a consequence of having limited numerical data, the problem

of solving for K and M from the observed data (Eq. 2) is ill-posed.!
That is, many solutions for K and M may match the projected modes.
More concretely, let n be the number of total DOFs and n” << n
be the number of observed DOFs. If we organize the theoretical

!For a known geometry and complete mode and eigenvalue information, K and M are
fully determined up to a scaling factor.
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modes as columns of a matrix U € R™" and we observe k modes
Ui, ..., U € R, then - ignoring projection onto image-space for
now — we are only able to measure an n’ X k submatrix of the
n X n matrix U. Similarly, we are only given k << n eigenvalues
w%, R wlz. Fig. 3 visualizes the matrices involved. In the following
section (Sec. 4), we explain how to deal with these limitations.

unseen unseen 2

w
U modes U modes ]
_ . L
unseen = unseen diag | ;
degrees of degrees of [
freedom freedom =

unseen
resonant frequencies

Fig. 3. The generalized eigenvalue equation (Eq. 1) defines the relationship
between K, M and U, w?. The matrix U has columns corresponding to
modes and rows corresponding to DOFs (i.e., a direction of motion for each
mesh vertex). The vector w? contains associated eigenvalues. We would like
to solve for K and M given partial information about U and w?.

4 APPROACH

Our aim is to extract and analyze motion features from a video to
estimate material properties. This involves two stages: (1) motion
extraction and image-space mode identification, and (2) solving
for material properties that best match the observed image-space
modes. The input is a video of a vibrating object, of which a mesh
is known, and we assume that it is vibrating under linear elasticity
(i.e., small motions). The output is a 3D volume showing voxelized
Young’s modulus and density values throughout the object.

4.1 Extracting Image-Space Modes from Video

4.1.1  Motion extraction. From an input video (which can be syn-
thetic or real), we compute local motion across the image over time.
Using complex steerable pyramids, we decompose each frame into
different spatial scales and orientations. The response of the origi-
nal image to each filter is represented as a complex image showing
local amplitude and phase. In each sub-band, we compute the local
phase change that occurred since the first frame. Using the method
detailed by Wadwha et al. and Fleet and Jepson [Fleet and Jep-
son 1990; Wadhwa et al. 2017], we convert these phase changes to
pixel-wise displacements. To increase SNR, we first filter out outlier
pixels (i.e., top 1% of displacement magnitudes) and then apply an
amplitude-weighted Gaussian blur to reduce noise. The result of
this motion-extraction step is a motion field for each frame, which
quantifies the horizontal and vertical displacement of each pixel
relative to the first frame.

4.1.2  Identifying image-space modes. Modes are simply periodic
motions occurring at particular frequencies, so we would expect
them to appear as peaks in the power spectrum of extracted motion
amplitudes. As is done in previous works that extract image-space
modes [Davis et al. 2017, 2015b, 2014], we perform a discrete Fourier
transform of the motion fields to extract the mode shapes. Our
motion-field data is stored as a three-dimensional array of size
(T, h,w), where T is the number of frames, and h and w are the
image height and width. We take the FFT along the time-axis of

this array, resulting in a complex-valued image showing the ampli-
tude and phase for each frequency bin. To make this more concrete,
let Ax;(x,y) and Ay, (x, y) be the horizontal and vertical displace-
ments from the first frame, respectively, of pixel (x,y) at frame ¢.
We take the one-dimensional FFT of Ax;(x,y) and Ay, (x, y), result-
ing in two (complex-valued) images, Axe (x,y) and Ey[ (x,y), for
each frequency bin £ = 1,..., T. From here, we compute the power

. . — — 12
spectrum by plotting magnitudes, | [Ax[, Ay [] H2 versus frequency,
(FPS - £/T) Hz. (The (x, y) notation has been dropped for clarity.) A
peak £* in the spectrum ideally corresponds to a resonant frequency

(FPS - £*/T) Hz and image-space mode [Re (Ec(»«) ,Re (@f*)]

4.1.3  Sampling image-space modes at mesh vertices. Since we model
the object of interest as a mesh, we need a way to pinpoint where
mesh vertices appear in the image. The 3D vertices are mapped
by a 3D-to-2D projection matrix to their image-space locations. To
approximate this projection matrix, a user manually identifies the
pixel locations of several “reference” mesh vertices and computes the
projection matrix P that best maps the corresponding 3D coordinates
from the mesh to the image.

Using P, we map all of the mesh vertices from their 3D coordi-
nates to 2D image coordinates. We then sample each image-space
mode at the pixel locations of visible mesh vertices. For mode j,
we construct a vector y; that contains the horizontal and vertical
displacement of each mesh vertex at the corresponding resonant
frequency. Supposing we observe g’ out of g mesh vertices, the
vector y; has the form

., 0]T e R%, 3)
where Ax; is the horizontal (pixel) displacement and Ay; the ver-
tical (pixel) displacement of vertex i. Unseen vertices are assigned

displacements of 0, and for notational clarity, we choose to position
them at the end of the vector.

vj = [Ax1, Ay, . Axg, Ayg, 0, ..

3D Mesh

Image-Space Mode
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Fig. 4. P is a 3D-to-2D projection matrix mapping 3D mesh vertices to 2D
image coordinates. Once we have mapped surface mesh vertices to locations
in the image, we can sample those points in the image-space modes.

4.2 Estimating Material Properties

4.2.1 Matrices K and M as functions of material properties. As dis-
cussed in Sec. 3.1, the matrices K and M are functions of Young’s
modulus and density (as well as geometry, which we assume is
already known). Computing them by hand is non-trivial, so an FEM
solver such as FEniCS [Alnees et al. 2015] can be used to assemble
these matrices. K and M are typically expressed as global matrices,



which are sparse and contain information for all vertices and edges
in the mesh. However, they can be decomposed into local matrices,
which contain edge information for a local collection of mesh ele-
ments. The global K and M can both be written as a sum of local
matrices, each of which can also be assembled with FEniCS.

One useful property is that these local matrices scale linearly with
local material properties. We can voxelize the volume containing
the mesh such that each voxel contains a collection of mesh ele-
ments. Suppose that a voxel has a local Young’s modulus E = 1 and
associated local stiffness matrix K. If the local Young’s modulus is
changed to E = 100, then the new local stiffness matrix becomes
100 Ke. The same is true for mass matrices. Given Young’s modulus
values w, and density values v, for each voxel, we can express the
global stiffness matrix and global mass matrix as

m m
K= Z weKe and M = Z VeMe. (4)
e=1 e=1

This allows us to represent K and M as functions of vectors w,v €
R™, which contain voxel-wise Young’s moduli and densities. The
complexity of our variables has now been reduced from O(n X n)
to O(m), where n is the total number of DOFs and m the number of
voxels covering the mesh (m << n).

4.2.2 Optimization formulation. Supposing we have modes

u1, ..., uy and their frequencies w1, . . ., wg, we would like to deter-
mine the voxel-wise Young’s modulus values w and density values
v such that, for each i = 1,. ..,k (refer to Eq. 1),

(i weKe) U ~ “’1'2 (i veMe) uj. (5)
e=1

e=1
Before we can formulate Eq. 5 as an optimization problem, we
have to address that our observations are modes that have been
projected onto image-space. Therefore, we need to recover the 3D
modes u; from the 2D projected modes y; (Eq. 3). For a given obser-
vation y;, it should be the case that

GPu; ~ y;, (6)

where P is the 3D-to-2D projection matrix discussed in Sec. 4.1.3,
and G is a binary matrix that sets unseen DOFs to 0. Remember that
yi also contains some noise from the camera and motion-extraction
step, so we want to avoid overfitting to y;.

Given Egs. 5 and 6, we have the following optimization problem:

k m m 2
w*, 0" = argmin Z Z weKe | u; — wl.z Z veMe | u;
w,0€R™ = =) =
w;€RMi=1,.. k=t 1\e= €= 2
k
2
+ > IGPu; - yill}. Y]
i=1

Note that w; and y; are the i-th observed frequency and image-space
mode and will contain noise.

As discussed in Sec. 3.2, Eq. 7 is under-determined, so we must in-
troduce regularization to make the solution well-defined. We choose
to minimize total squared variation (TSV) of w and v, which ensures
that the material properties vary minimally between adjacent vox-
els. Moreover, since we are estimating both stiffness and mass, the
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objective function can become arbitrarily low if we do not con-
strain one of these material properties to a certain range of values.
To see this, consider the eigenvalue equation in Eq. 1. Scaling M
and K in this equation by a factor of s still satisfies the equation:
(sK)u = w2 (sM)u. To resolve this ambiguity, we choose to minimize
the deviation of the Young’s modulus vector w from a mean value
w. Regardless of w, the relative differences in w*, v* will not change.
For defect detection, we generally only care about relative changes
in material properties. With regularization, the full optimization is

m m 2
(Z weKe | uj — a)l-2 (Z UeMe) u;
e=1

k
w*,0* = argmin L Z
’ woeR™ 2k —

u; €R™i=1,....k e=l 2
Ay k 2
+ 55 D IGPui il ®)
i=1
m 2
+ 22 VWl + 2 Vol + (l (Z we) - w) ,
2m 2m m\-

where oy, ayw, and a, are hyperparameters that determine the rela-
tive weights of the observation-matching term, regularization on w,
and regularization on v, respectively.

4.2.3 Optimization procedure. Eq. 8 is a nonconvex problem, but it
is quadratic with respect to w, v when u; is fixed, and it is quadratic
with respect to u; when w, v are fixed. Our optimization procedure is
to iteratively compute the closed-form solution for U = [ug ... u]
and then z = [wT,0T]T, thereby minimizing the objective function
at each step. For an 8x8x8 cube, one iteration takes about 10 sec-
onds (tested on 8-core Intel Core i9, 32 GB RAM). Once the value
of the objective function has converged — which typically takes
fewer than 100 iterations — we output the minimizing solution
z" = [w*T,0*T]T. The vectors w* and v* define the voxel-wise
reconstructed Young’s modulus and density values.

5 SYNTHETIC EXPERIMENTS

With FEM modeling, it is possible to generate physics-based simula-
tions of any object defined by a mesh. In our synthetic experiments,
we test our approach on videos of simulated vibration of various
objects, ranging from 2D surfaces to more complex 3D structures.

5.1 Creating Synthetic Data

By voxelizing the volume containing a mesh, we can simulate the
modal vibration of any mesh geometry. In this paper, we demon-
strate our proposed method on synthetic 2D drum heads, 3D cubes,
and the Stanford bunny.

5.1.1 Mesh Geometries.

Drums: The circular drum head is modeled as a triangular mem-
brane mesh, where the mesh vertices each have one DOF. We assign
material properties on a pixel grid, where each mesh element is
given the properties of its nearest pixel. In these experiments, we
use a mesh with 1530 (linear) triangular elements, laid on a 20x20
pixel grid. Each pixel within the circle covers about 5 elements.
Cubes: The cube is modeled as a tetrahedral mesh, and we assign
material-property values on a voxel grid. For an 8x8x8 grid, for
example, we assign a Young’s modulus and density to each of the
83 = 512 voxels. Each voxel covers six (linear) tetrahedral elements,
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Fig. 5. Changing the number of observed image-space modes. From a synthetic video of an impulse 8x8x8 cube, more than 30 image-space modes were
extracted. Keeping hyperparameters fixed, we estimated material properties given the 5, then 10, then 20, and then 30 extracted image-space modes at the

lowest resonant frequencies. This “impulse” cube has a jump in material properties in its core, which is not detected until more than 7 modes are used. For
each example, Young’s modulus is shown on the left, and density is shown on the right.
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Fig. 6. Intrinsic resolution of reconstructed volumes. Based on normalized
correlation with the ground-truth material properties smoothed at different
scales, one can approximate the intrinsic resolution of the reconstructed
material properties. In (a), we plot normalized correlation versus Gaussian
blur standard deviation o, for the reconstruction of Young’s modulus using
different numbers of image-space modes (keeping all other hyperparameters
fixed). As the number of observed modes increases, the reconstructed resolu-
tion also increases (i.e., smaller blur o). Subfigure (b) shows the true Young’s
modulus volume blurred at the intrinsic resolution (IR) of the reconstruction
given 20 image-space modes (o™ = 1.9 voxels).

so the mesh contains 3072 elements.

Bunny: The Stanford Bunny is modeled as a tetrahedral mesh.?
We voxelize the volume containing the mesh into an 8x8x8 grid,
resulting in about 21 mesh elements per voxel.

5.1.2  Defining material properties: We consider two cases for the
way material properties are spread across the mesh: smooth and dis-
continuous. In the smooth case, material properties vary smoothly
between elements. To generate examples, we draw random samples
from a multivariate Gaussian distribution with a Matern covariance
matrix, which allows for correlation between elements at different
spatial scales. For discontinuous examples, we assign a primary
Young’s modulus and density across the mesh, but with an “im-
pulse” jump in material properties in the middle of the mesh. For
3D objects, these impulse defects are not visible on the surface.

5.1.3 Simulating movies. For the objects we consider, we create
physics-based simulations of their vibration. After meshing and
2The surface mesh is from https://www.thingiverse.com/thing:151081, and tetrahedral-

ization was done using TetWild [Hu et al. 2018].
defining material properties, we assemble the global stiffness matrix

K and global mass matrix M using FEniCS, and then use scipy’s
built-in eigen-solver to solve for the r lowest modes u (e.g., r = 50).
The motion is synthesized as a linear combination of the modes
u1, ..., ur. Letting po be the vector containing the 3D positions of
all the mesh vertices at time 0, the position p; at time ¢ is

pr =po+ ) Aisin(2xfit) - u;, )

.
i=1

where A; and f; are the amplitude and frequency, resp., of mode i.
Note that in these simulations, we assume free vibration without
damping and directly prescribe the amplitude of each mode. Using
time-dependent analysis, more realistic simulations can be made of
the object’s reaction to an external force.

To create texture for motion extraction, we plot random scatter
points on the surface of the cube (see Fig. 1 for an example frame).
For the drum, simply plotting the mesh vertices and edges pro-
vides enough texture. Using matplotlib to plot surface points and
OpenCV and imageio for image I/O, we input the resulting anima-
tions to our material-estimation pipeline (Sec. 4).

5.2 Reconstrution from Synthetic Data

In this subsection, we show a series of experiments run on synthetic
data. Due to space limitations, we choose to highlight one geometry
for each experiment. Unless otherwise specified, all results are using
(noisy) motion-extracted image-space modes.

5.2.1 Effect of number of modes. As more image-space modes are
included, the inverse problem becomes better constrained. There-
fore, we expect that adding more image-space modes will improve
the material-property reconstruction. Fig. 5 shows how the Young’s
modulus and density reconstructions of a cube, whose defect lies in
its interior, improves as the number of image-space modes increases.
Note that, for this cube, more than seven image-space modes are
required before an interior defect can be detected.

Because of the need for regularization in the inverse problem, the
estimated material properties are often smoother than reality. As
Fig. 6 shows, in terms of normalized correlation, there is an optimal
blur kernel at which the ground-truth closely correlates with the
estimated material properties. Since normalized correlation with
the ground-truth is robust to scaling, it is an appropriate metric
for our technique, which only recovers relative changes in material
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Fig. 8. Reconstruction for a bunny mesh. Given a mesh of the Stanford
bunny, we voxelize the volume containing the mesh as an 8x8x8 grid. Using
the same approach for the synthetic cubes, we are able to recover Young’s
modulus and density from (true) image-space modes. Slicing along the
y-axis reveals interior material properties.

properties. Given 20 motion-extracted image-space modes (for an
8x8x8 voxel impulse cube), the intrinsic resolution has a blur kernel
of o ~ 1.9 voxels, and this intrinsic resolution becomes sharper (i.e.,
smaller o) as the number of given image-space modes increases.

5.2.2 Regularization. The strength of spatial regularization on ma-
terial properties affects the smoothness of the estimation. In Eq. 8’s
optimization formulation, the smoothness regularization terms are
||Vw||§ and ||Vo||2, which have scalar weights a,, and a,, respec-
tively. A lower regularization weight a,, or a, will result in a less-
smooth image of estimated material properties. In Fig. 7, we show
how the image of estimated density becomes sharper as a, decreases
while keeping a, fixed. This can result in a crisper picture of a de-
fect, but can also make reconstruction more sensitive to noise.
True o, =107 1010 101 1016

5000 2188 2660 3326 5563

000000
Q0000000
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3
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000000

 AARAARA

00000

2000 1817 1673 1430
Fig. 7. Effect of regularization. The hyperparameters a,, and a, control
the weight of the smoothness regularization terms in Eq. 8. Here we
show the estimated density for a cube with an impulse in the center.
Keeping a,, = 10710 fixed, as ay becomes smaller, the image of the
defect becomes crisper, but more sensitive to noise. These estimations

were done from the same 20 motion-extracted, image-space modes.

5.2.3  Effect of spatially correlated noise. Our current optimization
formulation only accounts for i.i.d. Gaussian noise in the image-
space modes (Eq. 8). Since noise in the extracted motion fields is
likely to be correlated in image-space, it is important to investigate
the effect of spatially correlated noise. We study this by adding
different types of noise to the true image-space modes, with noise
falling under one of three categories:
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(1) i.i.d. Gaussian noise. All DOFs in y (Eq. 3) have ii.d. Gaussian
noise with mean 0.

Correlated Gaussian noise. The random noise applied to each
DOF in y is correlated with the noise of nearby surface points
in the image. To better model realistic noise, we synthesize a
noise field by drawing a random sample from a multivariate
Gaussian distribution with mean 0 and Matern covariance
matrix. By tuning the correlation scale of the Matern covari-
ance function, we can consider noise at different correlation
lengths. A higher correlation length causes noise to be similar
across a larger region of the image, while a correlation length
of 0 corresponds to i.i.d. noise.

(3) Noise from motion extraction. In this case, we use the image-

space modes obtained through motion extraction (Sec. 4.1).

@

~

The image-space modes with artificial noise all have an average
PSNR of about 42 dB , and the motion-extracted modes for this
example contain a PSNR of 36 dB. The correlation length of the

noise appears to be a major factor in the quality of reconstruction.
Fig. 9 shows the imaged material properties, given these different

types of noise, for a drum with a discontinuous jump in material
properties. As the correlation length increases, the estimated image
of material properties becomes more prone to error; even so, the
defects appear strongly in the recovered image.

5.2.4 Inference resolution. One of the hyperparameters of our method
is the resolution of the grid used to infer material properties. Since
we cannot expect to match the infinite resolution of the real world,
we test our approach on situations where data is generated on a
finer grid than the inference grid. Fig. 10 shows the reconstruction
of a smooth cube as the inference resolution is decreased incremen-
tally from 8x8x8 to 5x5x5, keeping the source of data fixed. As we
would hope, the reconstruction degrades smoothly as the resolution
becomes coarser. An additional demonstration of geometric model
mismatch is shown in Fig. 11. As the inference geometry becomes
less accurate, the reconstruction quality decreases. A mismatch
of 10% still identifies large defects.

5.2.5 Predicted image-space modes. Another way to assess recon-
structed properties is to verify that they produce the same image-
space modes as the true properties. We can do so by running the
FEM forward model on the estimated Young’s moduli and densities
and looking at the resulting predicted image-space modes. Also re-
call that 3D modes are a decision variable in our optimizaton scheme
(Eq. 8). As Fig. 12 shows, it is informative to compare the true FEM
modes, observed modes U, optimized modes, and predicted FEM
modes, in image-space. The optimization process usually de-noises
observed modes. For some modes, spatially correlated noise may
make it difficult to recover the true mode. In such cases, it is possible
for the predicted FEM modes to still be similar to the truth.

5.2.6 Complex geometries. Our method can be applied to any ge-
ometry, simply by voxelizing the volume containing the mesh. Fig. 8
shows a volume reconstruction of material properties for the Stan-
ford bunny. Twenty true image-space modes of the monocular view
of the bunny shown in the figure were given for this reconstruction.
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Fig. 9. Effect of i.i.d., correlated, and motion-extracted noise. We first solved for the true image-space modes given the true material properties. For each
column (except for “True”), we added noise to the true image-space modes (reconstruction using 10 modes shown here). “Corr. Length” is the correlation scale
of the Matern covariance function used to synthesize a random noise field. In “Motion-Extracted,” these 10 image-space modes were extracted from a video
synthesized as vibrations at the 50 lowest true modes. The top row (“Ex. Noise Field”) shows the noise field that was applied to one of the true image-space
modes. The second row (“Ex. Mode”) shows the resulting image-space mode that was given as an observation to optimize material properties. For “Young’s
Modulus” and “Density,” we show an example reconstruction and the fractional standard deviation (o/p) across 10 trials of random noise applied to the true
image-space modes. In the case of “Motion-Extracted” image-space modes, we show the reconstruction from the synthesized video.
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Fig. 10. Mesh resolution model mismatch. After synthesizing a video for a cube with smooth material properties defined over an 8x8x8 voxel grid, we infer the
material properties on a mesh of various resolutions. This introduces model mismatch in our mesh. A coarse, yet still reasonable, inference resolution captures
large-scale variations but loses fine detail. For each example, Young’s modulus is shown on the left, and density is shown on the right.
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Fig. 11. Geometric model mismatch. After synthesizing a video of a square
cube with impulse material properties, we infer on a mesh of various incor-

Fig. 12. Similarity of predicted image-space modes to true, observed, and rect geometries. In particular, we extend the inferred geometry width by
optimized image-space modes. The “Observed” mode is often a noisy version a multiple of the true width. This introduces model mismatch: fitting to a
of “FEM (true).” “Optimized” refers to the optimized solution U~ in Eq. 8. rectangular prism rather than a cube. Results on Young’s modulus show

“FEM (pred.)” is the mode resulting from the estimated material properties. that geometric mismatch of 10% still performs reasonably well.



6 REAL-WORLD EXPERIMENTS

As a proof-of-concept, we created real-world versions of the drum
head and cube geometries used in synthetic experiments.

6.1 Real Drums

We tested our method on a dataset of real drum heads, each altered
with an unseen defect on its bottom surface. Although we are able
to see all DOFs of the drum surface in the video, the problem of
solving for material properties is still ill-posed because we observe
a limited number of projected modes.

6.1.1  Drum construction. The drums were constructed by fixing a
thin rubber sheet over a 4"x4" PVC adaptor with a rubber band. We
tested six defects with two different materials: nail hardening gel
and acrylic plastic circles. The defects included circles of varying
sizes and locations, and a rectangle. For the gel defects, we painted
the shape onto the bottom side of the rubber sheet and set the gel
under a UV lamp. The acrylic had been pre-cut into circles of radius
1.85 cm, which we glued to the bottom of the rubber using Gorilla
Glue. For each defect, we recorded a video of the homogeneous
drum before the defect was applied, for direct comparison to the
drum after the defect was introduced. We drew a speckle pattern
on the drum head for texture.

6.1.2  Vibration-capture setup. Fig. 13 shows a schematic of the
experimental setup. We taped the drum onto an optical table, with
the high-speed camera standing on the same optical table. The
excitation source was a PreSonus Sceptre S8 loudspeaker, which sat
on a platform separate from the optical table and was pointed at
the drum. For each video, we recorded the drum head’s vibration in
response to a 3.5-second linear frequency sweep (50 Hz to 1000 Hz)
being played through the speaker.

Fig. 13. Experimental setup for real drum heads. Vibrations of the drum are
induced by a loudspeaker and recorded with a high-speed camera.

6.1.3  Video capture. To capture monocular video, we used a Phan-
tom V1610 high-speed camera. Each video was captured at 6000
FPS at an image resolution of 288 x 384. To reduce camera noise,
we averaged every two frames for a resulting temporal frequency
of 3000 FPS. Note that in Fig. 14, the drums vibrate at frequencies
below 120 Hz. While we chose to first demonstrate our approach

using a high-speed camera, where compression and camera noise
are less challenging, many modal frequencies can be captured on a

consumer camera.
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6.1.4  Extracting image-space modes. We followed the step-by-step
process outlined in Sec. 4.1 by first extracting motion fields through-
out the video and then identifying image-space modes. We found
that in real videos, some level of manual selection was necessary
to verify peaks in the motion amplitude spectrum as modal motion
(without the aid of a more sophisticated peak-selection algorithm).
For instance, spurious camera motion would often appear as spikes
in the spectrum. Verification was done by visually inspecting the
magnified motion in the video at the frequency in question (follow-
ing the method proposed in [Wadhwa et al. 2013]). Fig. 14 shows
some image-space modes for the drum with a gel bar as its defect,
before and after the defect was introduced. The defect does not
appear in the low modes, but in higher modes, one can see regions
of slightly smaller motion than the rest of the drum head.

We modeled the drum as a triangular mesh with 1530 linear el-
ements and inferred material properties on a 20x20 pixel grid. To
sample image-space modes at the mesh vertices, we manually se-
lected the top-most, bottom-most, left-most, and right-most vertices
of the drum head in the video and recorded their image coordinates.
Following the procedure described in Sec. 4.1.3, we were able to
estimate the 3D-to-2D projection matrix from those four points, and
then map the remaining mesh vertices to image coordinates.
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Fig. 14. Extracted image-space modes from real videos of a drum, before and
after a defect had been introduced. The defect shown here is a gel rectangle,
which was painted on the bottom of the drum head. Differences in the
image-space modes pre- and post-defect already appear among the lowest
resonant frequencies, but become more noticeable as regions of smaller
motion at higher frequencies. Only vertical motion is shown.

6.1.5 Results and discussion. Fig. 15 shows estimated Young’s mod-
ulus and density for various real drum heads, before and after defects
were introduced. It is important to remember that the defects are not
visible in the video. The defects tend to appear more clearly in the
reconstructed Young’s modulus than in density. For both materials
(gel and acrylic), the defect appears as a bright region in Young’s
modulus. Interestingly, gel and acrylic appear in different ways in
the density estimations. For gel defects, there is a bright, filled re-
gion in the density map that corresponds to a higher mass from the
defect. For acrylic defects, this change appears on the edges of the
defect. A possible explanation is that the acrylic plastic circles are
much stiffer than gel, which bends along with the rubber membrane.
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Fig. 15. Reconstruction from real videos of drums. The defects shown here are a gel bar, gel circle, acrylic circle, and two acrylic circles, applied to the underside
of the drum head. For each defect, we recorded a video of the drum before and after the defect was applied. One cannot see the defect in a video frame, but
after applying our method, we were able to image the defects as changes in Young’s modulus and density. For each type of defect, the “Before” and “After”

material properties are plotted with the same normalized colormap. Notice that all of the defects appear as sharp rises in Young’s modulus.
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Fig. 16. Extracted image-space modes from real videos of a jello cube, which
had a clay sphere placed in its center. The first four out of eight identified
image-space modes are shown here. Note that the recovered image-space
modes and corresponding resonant frequencies are slightly different be-
tween the two cubes, indicating a change of material properties.

@

6.2 Real Cubes

To further test our method on real data, we recorded videos of real
gelatinous cubes. These included homogeneous cubes and cubes
with a hidden defect in the center. Various excitation methods were
tried, including a hammer hitting the table near the cube to mimic
an impulse force. While this method excited the most resonant
frequencies, in most videos, we could only identify at most eight

image-space modes. This presents a significant practical challenge.
As Fig .5 shows, at least eight image-space modes are required to
image an impulse change in material properties within a synthetic
cube. Real-world videos contain more noise due to background and
camera motion, which means that it is likely that more than eight
modes are required to detect an interior defect. Future work can
explore how to excite more ideal modal responses in a real 3D object.
Fig. 16 shows some of the image-space modes that were extracted
from a real video of a gelatinous cube with a clay sphere in its center.

7 DISCUSSION

We have shown that it is possible to recover spatially-varying mate-
rial properties of 3D objects from monocular video, even in regions
unseen in the image. This can be done by decomposing 2D surface
motion into image-space modes, and then solving for the Young’s
modulus and density values that agree with the observed modes.
We demonstrated our method on synthetic and real-world data of
objects ranging from 2D drum heads to a 3D bunny. Future work to
apply this approach in the real world might incorporate a model of
damping, explore optimal ways to excite modes in a 3D object, and
develop a mesh-fitting method for unknown geometries.

Our results highlight that monocular videos are a simple, yet
powerful, source of data for understanding the physical properties
of objects around us. Our proposed approach could be useful as

an efficient form of non-destructive testing, as it only requires one
monocular camera. Of particular interest to the graphics community,

future technology based on this idea could facilitate automatic iden-
tification of a real-world object’s physical properties, which could
then be used for physics-based animations. We believe that videos
are a promising domain for further research into non-destructive
testing and characterizing objects for physics-based graphics, turn-
ing everyday visual sensors into tools for material characterization.
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